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Abstract
In this paper, we study finite interaction-range corrections to the mosaic picture
of the glass transition as it emerges from the study of the Kac limit of large
interaction range for disordered models. To this aim we consider point-to-set
correlation functions, or overlaps, in a one-dimensional random energy model
as a function of the range of interaction. In the Kac limit, the mosaic length
defines a sharp first-order transition separating a high overlap phase from a
low overlap one. Correspondingly, we find that overlap curves as a function
of the window size and different finite interaction ranges cross roughly at the
mosaic length. Nonetheless, we find a very slow convergence to the Kac limit
and discuss why this could be a problem for measuring the mosaic length in
realistic models.

PACS numbers: 05.20.+y, 64.70.Pf, 75.10.Nr

1. Introduction

The paradigm of ‘random first-order transition’, or one-step replica symmetry breaking
(1RSB) theory, provides an elegant framework to conceptualize the phenomenology of liquids
approaching the glass transition [1]. Unfortunately, this scenario is strongly based on mean-
field models [2] and mean-field-like approximations to liquid theories [3] and cannot be taken
literally in the application to real system. The main node that has to be untied to establish
the 1RSB scenario as a convincing theory for real materials, is how mean-field theory should
be adapted and modified to take into account the finite range of interactions. Though a
fundamental theory of glassy systems in finite dimension is presently lacking, proposals
have been made that modify minimally mean-field scenarios to take into account the finite
interaction range. In [2], Kirkpatrick, Thirumalai and Wolynes developed a phenomenological
theory, known as ‘mosaic picture’, where it is postulated the existence of a coherence length
that grows on lowering the temperature. Below that length the system behaves essentially as
a mean-field glass, while it would cross over to liquid behavior at larger scales. The result is a
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theory where relaxation is dominated by activated processes stemming from the competition
between interface tension and a bulk configurational entropy. The mosaic picture has been
recently revived and deeply clarified by Bouchaud and Biroli [4], who showed that while usual
(point-to-point) correlation functions are insensitive to the possible growth of the coherence
mosaic length, it is possible to define different ‘point-to-set’ correlation functions, able to
reveal the growth of the mosaic length. In turn, the mosaic length has been related to the
relaxation time of ordinary, time-dependent correlation functions [5]. These papers prompted
on one side numerical simulations on kinetically constrained glasses [6] and on realistic glassy
models [7], on the other to theoretical calculations for models on trees and under the Kac limit
[8]. These last models are the natural starting point for understanding the mosaic picture, since
their local properties are well described by mean-field theory [9]. In [8] the study of point-
to-set correlation function has allowed us to derive a detailed picture relating the relaxation
in the mode coupling regime for T > Td to the one in the mosaic regime for T < Td . The
calculation, supposedly exact, concern the behavior of disordered glasses in the Kac limit. In
order to understand its relevance for short range systems, it is necessary to study the properties
of convergence to the Kac limit for finite interaction range. It has been found in [7] that in
standard Lennard–Jones super-cooled liquids, the transition from high to small overlap as a
function of the box size is much smoother than one would expect from the mosaic picture.
This poses the question of what behavior one should expect when the range of interaction is
not large.

In this paper, we address this question in a minimalistic finite-dimensional model
displaying 1RSB behavior in the Kac limit. The model is a one-dimensional version of
the random energy model3 [10] extensively studied in the context of stochastic models for
reaction diffusion equations and evolving populations [11]. This has two main advantages:
on one hand the Kac limit can be studied directly by probabilistic arguments, without having
to resort to replicas or cavity techniques, on the other the model for finite interaction range
can be studied exactly by transfer matrices.

A recent paper addresses the problem of finite range corrections to the mosaic picture in
a related one-dimensional XORSAT model [12]. That paper concerns the zero-temperature
limit, while we concentrate on finite temperature properties.

The organization of the paper is the following. In section 2 we define the model. Section 3
is devoted to the definition of the point-to-set correlation we study. In section 4, we discuss
theoretical approaches to the computation of this quantity. In section 5, we discuss the results
of exact computations with transfer matrices. Finally, we draw our conclusions.

2. The model

In order to compare the behavior of finite range-interaction systems with mean-field theories,
we need a model with variable interaction range which is well suited for numerical analysis.
We decided to consider the 1D version of the random energy model (REM) [10] introduced in
the first of [11]. This consists in a line of mL Ising spins, divided in L groups of m spins such
that only neighboring groups of spins interact (thus leading to an interaction range of 2m).

For each group i = 1, . . . , L we define a state variable σi taking values 1, . . . , 2m. In
the variables {σi} the interactions are restricted to nearest neighbors. The Hamiltonian of the
system is

H(�σ) =
L−1∑
i=0

Ei(σi, σi+1). (1)

3 The random energy model is somehow particular since it has formally Td = ∞.
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For each link the 22m interaction energies Ei(σ, τ ) are quenched random variables extracted
from a Gaussian distribution of zero mean and variance

E2 = m/2. (2)

We have considered fixed boundary conditions on the left side (in i = 0), defining
σ0 = 1, and open boundary conditions on the right side (in i = L). In this way, we
minimize the computational effort needed to compute the free energy ZL, which is expressed
as ZL = ∑

σ ZL(σ ), where ZL(σ) is given by the recursion relation

Z�+1(σ ) =
2m∑

τ=1

Z�(τ) e−βE�(τ,σ ), (3)

with Z0 = 1 and β = 1/T . Computing ZL thus requires O(L22m) operations.
In the m → ∞ limit, the thermodynamics is simple: the correlations between the energy

level implied by the one-dimensional structure are negligible and, independently of L, the free
energy coincides with the one of a REM with 2mL states and energies distributed according to
P(E) ∝ exp(−E2/mL):

F = lim
m→∞ − T

mL
log ZL =

⎧⎨
⎩

−β

4
− T log(2) T > Tc,

−√
log(2) T � Tc,

(4)

with Tc = (2
√

log(2))−1.

3. The observables

Here we define the correlation functions of interest, allowing us to detect a growing static
length. These are built with the aid of a suitably chosen reference configuration {σ ∗

i }i=1,...,L,
to which one fixes the system outside a window with � sites located around the center of the
system. For convenience we renumber 1, . . . , � the sites in the central window. Inside the
window the system is at thermal equilibrium. We investigate the correlation among typical
in-window configurations �σ with �σ ∗ to see whether a characteristic length �c exist such that for
window sizes � < �c, �σ � �σ ∗ inside the window, while, for � > �c, �σ and �σ ∗ are uncorrelated.

As detailed in the following, in order to sharpen the transition from correlated to
uncorrelated behavior we decided to fix the reference configuration �σ ∗ always to the ground
state. We then study the thermodynamics of a system which is fixed to the reference
configuration outside a window of size �:

σi = σ ∗
i ∀i < 1 and ∀i > �. (5)

The system has then fixed boundaries and � free variables, {σi}i=1,...,�. Within the window, we
can define its overlap with respect to the reference configuration as

q(�σ , �σ ∗) ≡ 1

�

�∑
i=1

δ(σi, σ
∗
i ). (6)

Note that our point-to-set correlation function differs from the one defined in [4], and used
subsequently, which consists in choosing σ ∗ as a configuration thermalized at temperature
T. We have checked that our choice makes the transition at �c sharper, and is thus more
appropriate to study finite range effects.

We need some observable estimating the similarity of the typical configuration with
respect to the reference one, and to this end we introduce the following two quantities:
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p0(�, β) ≡ e−β
∑�

i=0 Ei(σ
∗
i ,σ ∗

i+1)∑
{σi }�i=1

e−β
∑�

i=0 Ei(σi ,σi+1)
, (7)

q0(�, β) ≡
∑

{σi }�i=1
q(�σ , �σ ∗) e−β

∑�
i=0 Ei(σi ,σi+1)

∑
{σi }�i=1

e−β
∑�

i=0 Ei(σi ,σi+1)
, (8)

where the denominator is the ‘window partition function’. The first quantity, p0, is the
relative weight of the reference configuration in the window partition function computed at
inverse temperature β, while the second quantity, q0, is the mean overlap with the reference
configuration. Both quantities still depend on the quenched disorder and we compute their
typical values by log(ptyp) ≡ log(p0) and log(qtyp) ≡ log(q0), where the overline stands for
the average over the quenched disorder. We expect log(p0) and log(q0) to be self-averaging,
since these are related to free-energy differences.

4. Theoretical analysis

In this section we address the problem of an analytic computation of the correlation functions.
We will first study exactly the asymptotic long-range limit m → ∞. After that we will address
the problem of finite m effects that our numerical analysis below reveals to be very large.

4.1. The correlation functions for m → ∞
The infinite m limit can be understood since in this limit the correlations between the energy
level due to the one-dimensional structure of the model become negligible. In this case, using
this independence approximation, we see that, besides the state �σ ∗ of energy E∗, the window
has 2m� −1 states with energies distributed according to P�(E) ∝ e−E2/m(�+1) (there are � sites
and � + 1 links!). So that the average density of states is

N (E) ∼ 2m� e−E2/m(�+1) + δE,E∗ (9)

and the microcanonical entropy per link (divided by m) as a function of the link energy
ε = E/m(� + 1) is

S�(ε) =
⎧⎨
⎩

−ε2 + 1
1+1/�

log(2) |ε| <
√

1
1+1/�

log(2)

0 otherwise.
(10)

From this function the canonical thermodynamics can be derived. Before doing that, a few
comments are in order: (a) the constrained entropy is reduced by a constant term with respect
to the unconstrained case, given by the above formula with � = ∞ (see figure 1). (b) The
choice of the reference configuration �σ ∗ as the ground state has no effect on the other states:
the same entropy would be obtained for different choices of σ ∗. Of course the window
thermodynamics and correlations would depend on the energy of �σ ∗.

If the state �σ ∗ was absent, the free-energy per link would read

f̃ (β, �) =
⎧⎨
⎩

− β

4 − T
1+1/�

log(2) T > Tc

√
1 + 1/�

−
√

1
1+1/�

log(2) T � Tc

√
1 + 1/�.

(11)

Including the state �σ ∗ one therefore has

f (β, �) = min{ε∗, f̃ (β, �)}, (12)

with ε∗ = −√
log(2), that is the ground-state energy of the � = ∞ system. When the two

terms in equation (12) are equal, a first-order transition takes place (see figure 1) at inverse
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Figure 1. Microcanonical entropy for the full system (� = ∞, dotted line) and for a window
of size � = 4 (thick line). A system prepared in the ground state of the full system (big dot)
and constrained in a window of size � = 4 makes a first-order transition at inverse temperature
βc(� = 4) (the slope of the thin line).

temperature,

βc(�) = 2
√

log(2)

(
1 − 1√

� + 1

)
= βc

(
1 − 1√

� + 1

)
, (13)

which in turn defines a temperature-dependent critical length,

�c(β) = β(2βc − β)

(βc − β)2
, (14)

separating the confined regime � < �c where ptyp = qtyp = 1 from the deconfined regime
� > �c where ptyp = qtyp = 0.

The size of the critical window diverges as expected at the critical temperature, where the
configurational entropy vanishes. We find that this critical length is quadratic in the inverse
of T − Tc; had we chosen the reference state �σ ∗ with a different rule, the result would have
been different. For example, a direct calculation shows that choosing �σ ∗ with Boltzmann
probability at temperature T implies a linear critical length in 1/(T − Tc).

We can understand better the structure of the excitations studying the window free-energy
as a function of the overlap q, i.e. the free energy of configurations that do not coincide with
�σ ∗ on exactly d sites among the � of the window, with q = 1 − d/�. For simplicity, we can
consider the contribution of ‘one bubble configurations’ where all the d sites in question are
contiguous. We show below that configurations with more than one bubble are exponentially
improbable for large m values.

For large m, the dominant contribution to the free-energy per link f (β, �, d) =
limm→∞ F/m(� + 1) is independent of the position of the bubble and reads, for d = 1, . . . , �,

f (β, �, d) =

⎧⎪⎨
⎪⎩

− �−d
�+1

√
log(2) − d+1

�+1

(
β

4 + T
1+1/d

log(2)
)

T > Tc

√
1 + 1/d,

− �−d
�+1

√
log(2) − d+1

�+1

√
1

1+1/d
log(2) T � Tc

√
1 + 1/d.

(15)

For d = 0 the free energy is simply given by f (β, �, 0) = ε∗. As one can explicitly see,
f is monotonically decreasing in d: the completely open configuration is always the most
favored among the ones with d � 1. Note that at low temperature f (β, �, 1) > f (β, �, 0),
and the difference B(β) = (l + 1)[f (β, �, 1) − f (β, �, 0)] can be interpreted as a relaxation
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Figure 2. The free-energy barrier to relax from the ground state �σ ∗.

free-energy barrier for a system prepared in the ground state �σ ∗. The barrier B(β), plotted in
figure 2, is �-independent and vanishes at a temperature T = Tc/(1 − 1/

√
2).

If we remove the assumption of considering only one-bubble configurations, the free
energy in equation (15) becomes

f (β, �, d) = min
b∈{1,d/2}

f (β, �, d, b), (16)

where f (β, �, d, b) is the free energy of configurations differing in d variables from �σ ∗ and
having b bubbles, given by the following expression in the large m limit:

f (β, �, d, b) =

⎧⎪⎨
⎪⎩

− �+1−d−b
�+1

√
log(2) − d+b

�+1

(
β

4 + T
1+b/d

log(2)
)

T > Tc

√
1 + b/d,

− �+1−d−b
�+1

√
log(2) − d+b

�+1

√
1

1+b/d
log(2) T � Tc

√
1 + b/d.

(17)

It is easy to verify that the minimum in equation (16) is always achieved in b = 1, i.e. on
one-bubble configurations. Multi-bubble configurations can only modify the corrections to
the leading behavior in m.

We would like to end this section commenting that, although this paper concerns the 1D
case, the analysis presented here for m → ∞ generalizes to arbitrary dimension [13] where
they give results in agreement with [8]. For arbitrary dimensions, the behavior of the critical
length depends on the choice of σ ∗ and behaves as 1/(T − Tc)

2 if σ ∗ is the ground state and
as 1/(T − Tc) if σ ∗ is a thermalized state at temperature T. Correspondingly, the interfaces
are flat, and form manifolds of dimension θ = d − 1.

4.2. Analysis of the ground state

We would like to present here some attempts to take into account finite m contributions.
Corrections to the asymptotic result have two sources: the correlations between the levels and
sample-to-sample fluctuations. Though we were not able to deal with the former, we could
analyze some of the latter.

Actually, we derive some analytical results under two main approximations, namely
(i) energy levels are basically treated as uncorrelated and (ii) the energy of the reference
configuration (the ground-state energy E∗) is considered to be evenly distributed among the
links, each one having a local energy mε∗ = E∗/L (please note that the entire system is made

6
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of L links, while the window had � + 1 links). We will see below that numerical evidence
shows that this is the case not too close to the boundaries i = 0 and i = L.

The distribution of ε∗ is known for L = 1, since in that case mε∗ corresponds to the
minimum among 2m independent random Gaussian variables of variance m/2, that is

ε∗(L = 1)
d= −

√
log(2) +

log(m) + log(4π log(2)) + 2X

4m
√

log(2)
+ O

(
log(m)

m2

)
, (18)

where X is a Gumbel distributed variable, i.e. P(X > x) = e−ex

. Similarly, a closed formula
can be obtained for L = 2 which corresponds to a two-level GREM. Unfortunately, as soon
as L > 2 there are no exact results on the ground-state energy of the model. In this case, an
analytical upper bound can be simply constructed by the following greedy algorithm: given that
σ0 is fixed, assign σ1 to the value minimizing E(σ0, σ1) and repeat the procedure recursively
on the next variable; at each step the link energy has the same probability distribution as
mε∗(L = 1), and so the global ground-state energy satisfies E∗(m,L) � mLε∗(L = 1).

Our numerical data suggest this bound to be tight at the leading order in m for any value
of L. More precisely, we find numerically that the mean ground-state energy can be very well
fitted, for large values of L, by the following formula:

E∗(m,L)

mL
� −

√
log(2) +

A

m3/2
+

B

m1/2L
, (19)

with A ∼ 0.7 and B ∼ 0.4. This behavior clearly shows that the convergence to the asymptotic
intensive energy, −√

log(2), becomes faster increasing L: for L = 1 corrections are O
( log(m)

m

)
and they become O(m−3/2) in the L → ∞ limit. We see from figure 3 that already for
L ∼ 10, not too close to the boundaries, ground states link energies are independent of
L, and their numerical values are well represented by the previous formula with L = ∞.
Obviously, given the values of m we can study, formula (19) has to be taken as an empirical
interpolating function. We find from our data that in ground-state configurations, link energies
have very small sample-to-sample fluctuations, which decrease for larger m values: for this
reason considering only mean values for the link energies is a good approximation. In order
to minimize finite L effects and have a homogeneous ground state inside the window we find
that it was enough to consider sister sizes L = � + 20, i.e. ten sites between the window and
system boundaries.

Once understood the ground state structure, let us now turn to the estimate of the window
correlation functions.

4.3. Finite m estimates of the correlation functions

Under the assumptions stated above, the weight, in the window partition function, of all the
configurations differing in d variables with respect to �σ ∗ is given by

Zd = (� + 1 − d)(2m − 1)d

∫ ∞
(d+1)mε∗ dz e−βz− z2

m(d+1)

∫ ∞
(d+1)mε∗ dz e− z2

m(d+1)

e−β(�−d)mε∗
, (20)

where the first term gives the number of ways to place a bubble of size d in a window of size
�, the second term counts the number of configurations of the d variables which have to differ
from �σ ∗, the fraction is the average of e−βH over the pdf of the energies of the bubble (it is
the sum of d + 1 Gaussian variables of variance m/2, bounded from below by the ground-state
energy, (d +1)mε∗) and the last term is given by the l−d links having the ground-state energy.
In equation (20) we have that d ∈ {1, . . . , �}, while the weight of the ground state is given by

7
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Figure 3. The mean value of the ground-state link energy as a function of the position in the
system for L = 10 and L = 20. On the left boundary the configuration is fixed, while on the right
end the system is free. The horizontal line is −√

log(2).

Z0 = exp(−βE∗) = exp(−β(� + 1)mε∗). We do not write explicitly the dependence of Zd

on β, �,m and ε∗ in order to keep the notation light.
Zd is an annealed approximation for the window partition function at a fixed distance

from the ground state. Still, the fact that we keep the dependence on ε∗ explicit is important
in order to control some fluctuations: e.g. both log(p0) and log(q0) are given by free-energy
differences, where the dependence on ε∗ is partially canceled out, and their average over ε∗

can be done without any approximation. The two observables we are interested in are indeed
given by

p0 = Z0∑�
d=0 Zd

, q0 =
∑�

d=0(1 − d/�)Zd∑�
d=0 Zd

, (21)

and can be easily computed by evaluating numerically the integrals in the definition of Zd ,
once the pdf of ε∗ is known. We have measured numerically such a distribution, but once we
plugged it into equation (20) we discovered that the observables we are interested in (ptyp and
qtyp) mainly depend on the mean of ε∗, being such a distribution very narrow. Moreover, we
are mostly interested in the dependence of these observables on m in order to understand the
approach to the m → ∞ limit, and the average of ε∗ carries the largest dependence on m.

For these reasons, the analytical curves we are going to compare with numerical data
in the following section have been obtained using a non-fluctuating value for ε∗, give by
equation (19) that is ε∗ = −√

log(2) + 0.726/m3/2. As we show below, this dependence on
the interaction range is already enough to produce strong finite m effects. Remind that, in the
m → ∞ limit, the logarithm of Zd is given by the free energy in equation (15), and both ptyp

and qtyp should drop from 1 to 0 when � crosses the value of �c(β) given by equation (14).

5. Numerical results

The aim of this section is to compute numerically the above-defined critical length scale for
the 1D random energy model. The numerical experiment we have performed consists in

(i) computing the ground state of a system of size L;

8
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Figure 4. The overlap qtyp as a function of � at T = 0.8. Left panel: numerical values obtained
through the transfer matrix algorithm for various values of m. Right panel: analytic curves obtained
through the approximations discussed in the text. The vertical lines mark the value of �c in the
m → ∞ limit.

(ii) fixing the ground-state configuration outside a window of size �;
(iii) computing qtyp and ptyp in order to see whether there is a first-order transition in these

quantities varying the window size �.

In the m → ∞ limit we expect such a transition when the window size crosses the value
�c(β) given in equation (14). For finite values of m the system cannot have any transition
(it is one-dimensional), but still the crossover may be very sharp. Our main interest is in
understanding how much the behavior of finite m systems resembles the mean-field (i.e.
m → ∞) limit and how fast is the convergence.

As explained in the previous section, we take the size of the system L larger than the
size of the window in order to avoid boundary effects; that is, to all practical purposes we are
working in the L → ∞ limit.

Thanks to the one-dimensional topology all the experiments can be done exactly by
transfer matrix methods. Unfortunately, for each link we have a different random matrix
with 2m × 2m entries; for this reason we are forced to small values of m (actually we use
m = 6, 8, 10, 12). Please note that these m values are not so small: the number of degrees
of freedom per region (2m) is comparable or even larger than the number of particles within
a typical region studied in realistic models of glassy systems [7]. Since we are interested in
computing the free energy at a given value of the overlap with the reference configuration,
the transfer matrix computation is slightly more complicated and requires a total time of order
O(�222m). The average over the disorder is done with at least 1000 samples for any m value.

We are going to present results for temperature T = 0.8, which is a very reasonable value
(in the m → ∞ limit the critical temperature is Tc = 0.600 56 . . .), since the critical window
size is �c(T = 0.8) = 15.09.

In figures 4 and 5 we show, respectively, log(qtyp) and log(ptyp) as a function of �. Left
panels report data from exact numerical computations, while right panels show the outcome
of the analytical approximated analysis. The vertical line is the critical window size �c.

Some comments are in order. The behavior of all the curves for different m hints at a
first-order transition for m → ∞ separating a high overlap region at small � from a zero
overlap region at large �. This behavior is in agreement with the prediction of the mosaic
theory, however, the convergence is very slow! Indeed so slow that it does not allow an
estimate of the speed of convergence. The crossing point of numerical data for log(qtyp) is
around � = 10, well below the predicted �c = 15.09. In principle, one could argue that the
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Figure 5. Same as figure 4 for the quantity ptyp.

one-dimensional model may have a first-order transition at a lower value of �c, but the crossing
point of numerical data for log(ptyp), taking place around � = 17, suggests that the crossing
point is strongly dependent on m and converges for m → ∞ somewhere between 10 and 17
(we are assuming that both qtyp and ptyp have a jump at the same value of � for m → ∞).

Still more evident indications of strong finite m effects come from the analytical curves
(see right panels of figures 4 and 5): these have been computed from equations (20) and (21)
with ε∗ = −√

log(2) + 0.726m−3/2, see equation (19), which is the best interpolation for
the ground-state energy in the window, far from the boundaries. Although these curves have
been obtained under some approximations, they look qualitatively very similar to the exact
numerical data, and also quantitatively are not far from the data. For the analytical curves we
know that they have a jump in � = �c in the m → ∞ limit, still for the present values of m
they show a crossing point quite far from �c.

Moreover, the value of the overlap at the crossing point may be very small, depending on
the overlap one is looking at (see, e.g., the value of ptyp at the crossing point). For this reason,
it may be very difficult to locate the crossing point (remember that our model has a very strong
random first-order transition in the m → ∞ limit, and most probably things work even worst
in more realistic models!).

We remark that simulating the model for a single value of m it would be difficult to claim
any agreement with the 1RSB theory of glasses and the mosaic state: it is comparing different
values on the interaction range m that the agreement becomes apparent. One could argument
that one dimension is the worst possibility to observe any behavior reminiscent of a phase
transition, and in higher dimension the situation could be more favorable to the theory. Recent
simulations of more realistic binary Lennard–Jones mixtures [7], however, failed to identify a
sharp mosaic length.

In order to understand better why qtyp has such strong finite m corrections and show an
effective crossing point at window sizes smaller than �c, we have studied the window free-
energy as a function of the overlap with respect to the ground state. We show in figure 6 such
a free energy for T = 0.8, � = 10 and many values of m in order to study the dependence on
m. We see that, increasing the value of m, all the curves f (q) tend to decrease, but corrections
to the m → ∞ limit are clearly larger for f (q = 1) than for the rest of the curve. Please note
that f (q = 1) corresponds to the ground-state energy, that converges in the m → ∞ limit
to −√

log(2) (represented by the horizontal line in the plot). The different convergence rate
for different q values can be understood also from the analytical computation in the previous
section; indeed in the expression for Zd , see equation (20), larger corrections are for small d
values (corresponding to larger q).
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Figure 6. Window free-energy for � = 10 and T = 0.8 as a function of the overlap with respect
to the ground-state configuration.
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Figure 7. Window free-energy for T = 0.8,m = 12 and many different values of �, from 6 (top)
to 20 (bottom).

A discrepancy with respect to the analytical computation is that the free energy presents a
minimum at a positive value of the overlap, while in the m → ∞ limit we expect the minimum
to be in q = 0. This may be one more effect of the slow convergence to the mean-field limit.

In the tentative of extrapolating the numerical results to the m → ∞ limit, we have fitted
f (q) data at fixed q, finding that the limit of f (q = 1) is always compatible with −√

log(2),
while for q < 1 the asymptotic value of f (q) is quite close to that computed numerically with
m = 12, especially close to the minimum of f (q).

In figure 7, we show the free energy f (q) for m = 12 (which is very close to the m → ∞
value in the low q region) for many � values, ranging from 6 to 20 (top to bottom). The
apparent first-order phase transition between the q = 1 and the small overlap regimes is taking
place between � = 9 and � = 10 when the minimum goes below f (q = 1),4 consistently
to what we observe in the left panel of figure 4. Nonetheless, in the m → ∞ we expect the

4 Please note also that f (q = 1) does not depend on the window size �, confirming that the ground state in the
window is insensitive to the boundaries.
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transition to take place when the minimum goes below the value −√
log(2), and we see from

figure 7 that this happens around � = 14, much closer to the predicted �c(T = 0.8) = 15.09.

6. Conclusions

The scope of this paper is to study the properties of convergence to the mosaic picture in
models with larger and larger interaction ranges. We showed that, as should be expected, the
behavior of point-to-set correlations approach the behavior predicted by the mosaic picture
for large interaction range. The numerical evidence in favor of that comes from a differential
analysis comparing the behavior for different values of the interaction range m. Curves at
single values of m do not allow us to distinguish the mosaic behavior from a single state
picture where the point-to-set correlation exhibit a smooth behavior as a function of �. This
is unfortunate as it indicates that it could be difficult to find confirmations or disproval of the
mosaic picture in realistic glass former models on the basis of the behavior of point-to-set
correlations.

Some papers have recently addressed the study of point-to-set functions in non-disordered
models. Amazingly, the model where the mosaic predictions seem to fit better the data is a
kinetically constrained model considered in [6] where a step-like behavior of the overlap as
a function of the window size is observed. Conversely, for a Lennard–Jones binary mixture,
though it is observed a characteristic length growing with temperature, no step behavior is
seen. We remark on this purpose that in our data it would be difficult to decide in favor of the
mosaic picture on the basis of a single value of m. It is only comparing different values of m
that evidence for the first-order jump has been obtained.

Moreover, the convergence to the large m limit is rather slow: finite m curves are very
smooth and show no precursor of the asymptotic step-like behavior. In [12], a similar 1D model
with a finite interaction range, namely a XORSAT model, is studied. The main difference
with respect to our study is that the model studied in [12] possesses zero-energy ground states
and has been studied only at zero temperature. Despite these differences also in [12] large
finite-range effects have been found.

The main effect that we have seen in the model studied here is that a rather sharp transition
takes place at a finite temperature βc(�) between a single low-energy ground state (i.e. of zero
complexity) and a set of higher free-energy states (with positive complexity) in a way more
or less similar to the mosaic picture. However, this transition is plagued by large fluctuations
mainly due to the energy of the ground state, which plays a fundamental role in determining
the critical temperature: the final effect being a sizable smoothing of the random first-order
phase transition at finite value of the interaction range m.

The conclusions reached in this work suggest that the direct observation of the phase
transition predicted within the mosaic theory may be rather difficult in realistic models, where
the interaction range cannot be made very large. A smarter approach for the identification of
such a transition is likely needed.
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[3] Mézard M and Parisi G 1999 Phys. Rev. Lett. 82 747
[4] Bouchaud J-P and Biroli G 2004 J. Chem. Phys. 121 7347
[5] Montanari A and Semerjian G 2006 J. Stat. Phys. 125 23
[6] Jack R L and Garrahan J P 2005 J. Chem. Phys. 123 164508
[7] Cavagna A, Grigera T S and Verrocchio P 2007 Phys. Rev. Lett. 98 187801
[8] Franz S and Montanari A 2007 J. Phys. A: Math. Theor. 40 F251
[9] Franz S and Toninelli F L 2004 Phys. Rev. Lett. 92 030602

Franz S and Toninelli F L 2004 J. Phys. A: Math. Gen. 37 7433
Franz S and Toninelli F L 2005 J. Stat. Mech. P01008

[10] Derrida B 1980 Phys. Rev. Lett. 45 79
[11] Brunet E and Derrida B 1997 Phys. Rev. E 56 2597

Brunet E and Derrida B 2001 J. Stat. Phys. 103 269
Brunet E and Derrida B 2004 Phys. Rev. E 70 016106
Brunet E, Derrida B, Mueller A H and Munier S 2006 Phys. Rev. E 73 056126
Brunet E, Derrida B, Mueller A H and Munier S 2007 Phys. Rev. E 76 041104

[12] Montanari A and Sinton A 2007 A simple one dimensional glassy Kac model Preprint 0705.0054
[13] Franz S, Parisi G and Ricci-Tersenghi F unpublished

13

http://dx.doi.org/10.1016/S0378-4371(02)00482-X
http://dx.doi.org/10.1103/PhysRevB.36.8552
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1103/PhysRevLett.82.747
http://dx.doi.org/10.1063/1.1796231
http://dx.doi.org/10.1007/s10955-006-9175-y
http://dx.doi.org/10.1063/1.2075067
http://dx.doi.org/10.1103/PhysRevLett.98.187801
http://dx.doi.org/10.1088/1751-8113/40/11/F01
http://dx.doi.org/10.1103/PhysRevLett.92.030602
http://dx.doi.org/10.1088/0305-4470/37/30/003
http://dx.doi.org/10.1088/1742-5468/2005/01/P01008
http://dx.doi.org/10.1103/PhysRevLett.45.79
http://dx.doi.org/10.1103/PhysRevE.56.2597
http://dx.doi.org/10.1023/A:1004875804376
http://dx.doi.org/10.1103/PhysRevE.70.016106
http://dx.doi.org/10.1103/PhysRevE.73.056126
http://dx.doi.org/10.1103/PhysRevE.76.041104
http://www.arxiv.org/abs/0705.0054

	1. Introduction
	2. The model
	3. The observables
	4. Theoretical analysis
	4.1. The correlation
	4.2. Analysis of the ground state
	4.3. Finite

	5. Numerical results
	6. Conclusions
	Acknowledgments
	References

